

Parts of an experiment

- <u>Independent variable</u> the factor that is being tested. The factor that causes change.
- <u>Dependent variable</u> the measurable factor that changes because of the independent variable. The factor that is measured or observed for change.
- <u>Control</u> group under normal conditions that experimental groups are compared to.
- <u>Constant</u> factors that are the same for all experimental groups

- How might you set up an experiment to test for the effect of temperature on respiration?
- What would be your:
 - Control group-
 - Constants-
 - Independent variable-
 - Dependent variable-
 - What tools would you use to collect your data?
 - What SI units would you use to collect data?
 - How would you make a conclusion?

What is the dependent variable on this graph? Does the price per bushel always increase with demand? What is the demand when the price is 5\$ per bushel?

What characteristics do all living things share?

- 1) Made of one or more cells.
- 2) Organization (DNA, cells, tissues, organ systems)
- 3) Reproduces
- 4) Grows and develops (cell division, development)
- 5) Respond to stimuli (homeostasis [regulation of an organism's internal environment])
- 6) Evolves over time (favorable adaptations are inherited)

Life Substances

- Living things are made of <u>organic</u> <u>compounds</u>.
- Proteins
- Carbohydrates
- Nucleic Acids
- Lipids

Enzymes

- The target molecule is called the <u>substrate</u>.
- The substrate fits into a uniquely shaped <u>active site</u> on the enzyme that forces the desired reaction to take place.

All these observations lead to the development of <u>cell theory</u>.

- Cell Theory:
- 1) All organisms are composed of one or more cells.
- 2) The cell is the basic unit of life.
- 3) All cells come from preexisting cells.

There are 2 basic types of cells

• <u>Prokaryotes</u>: cells that do not have membrane bound internal structures (no organelles). Unicellular organisms.

Ex. Bacteria

• <u>Eukaryotes</u>: cells that *do* have membrane bound internal structures (have organelles). Usually multicellular organisms.

Ex. Plants, animals, protists, fungi

Active Transport (Ion Pumps)

- Requires energy Moves particles
- against the concentration gradient.
- Takes place through carrier proteins in the cell membrane.

Cellular Respiration

 $C_6H_{12}O_6 + O_2 \rightarrow CO_2 + H_2O + Energy (as ATP)$

Glucose + Oxygen \rightarrow Carbon dioxide + Water + Energy (as ATP)

- The conversion of glucose into ATP.
- Takes place in the mitochondria.
- Aerobic respiration is what happens in the presence of oxygen. It is more efficient than anaerobic respiration (occurs without oxygen)

Mitosis

- <u>Mitosis</u> is the part of the cell cycle where the nucleus divides to form two nuclei, each new cell contains a complete set of chromosomes.
- <u>4 Stages of Mitosis</u>
- 1) Prophase
- 2) Metaphase
- 3) Anaphase
- 4) Telophase

Interphase is **NOT** a stage of mitosis because the nucleus is not dividing at that time.

Homologous chromosomes Fach of the 23 pairs of chromosomes consist of two homologous chromosomes. Fach are similarian in shape, size and content.

Diploid – a cell with two sets of chromosomes such as somatic cells. (2n)
 Haploid – A cell with one set of chromosomes such as gametes. (n)
 Gamete = sex cells (eggs and sperm)
 Fertilization

The stages of Meiosis are similar to Mitosis

<u>Mitosis</u>

- Prophase
- Metaphase
- Anaphase
- Telophase
- Results in 2 daughter cells with = # of chromosomes as the parent cell.

• Meiosis

- Prophase I, Metaphase I, Anaphase I, Telophase I
- Prophase II, Metaphase II, Anaphase II, Telophase II
- Results in 4 daughter cells with ½ # of chromosomes as the parent cell.

Crossing over creates genetic variation.

 Instead of producing only two types of chromosomes, four different chromosomes are produced. This doubles the variability of genes on gametes.

Change in Chromosome

- Being short a chromosome often results in death.
- Having extra chromosomes (trisomy) results in abnormalities such as:
 - Down Syndrome (trisomy 21)
 - Kleinfelter's Syndrome(extra X sex chromosome in males)
- Trisomy is caused by <u>nondisjunction</u>the failure of chromosomes to separate during meiosis.

How Genetics Began:

- Gregor Mendel
 - Austrian Monk
 - Carried out experiments on garden peas to predict patterns of heredity.
- The patterns Mendel discovered form the basis of genetics.
- <u>Genetics</u> is the study of heredity.

The alleles an organism inherits is its <mark>genotype</mark> . TT or Tt	тт
How an organism looks	t
because of its	
genotype is called the	t
<u>phenotype</u> .	
TT = tall	
Tt = tall	
tt = short	

Pedigree • Chart of family history that shows how a trait is inherited over several generations. • Helpful in predicting genetic disorders. Pedigree Symbols Used in a Pedigree Generation Males 1 O Females - Vertical lines connect ٠ children to their parents. or S A solid square or circle indicates that the person has a certain trait. ш or A half-filled square or circle indicates that the person is a carrier of the trait IV he trait

Central Dogma of Genetics DNA \rightarrow RNA \rightarrow Protein

- DNA is replicated to provide identical genetic material to all cells (DNA Replication)Nucleus
- **RNA** is built from the genes on DNA (Transcription) Nucleus
- **Proteins** are built from RNA (Translation) Cytoplasm

- <u>Mutation</u> is any change in the DNA sequence that also changes the protein it codes for.
- Mutations can affect sex cells or somatic (body) cells.
- ONLY mutations occuring in the sex cells can be passed on to offspring.
- Causes of mutations:
 Mistake during DNA replication
 - Mutagens: gamma radiation, x-rays, ultraviolet light, dioxin, asbestos, cyanide, formaldehyde

Genetics was used before it was fully understood.

• <u>Selective breeding/Artificial selection</u>breeding livestock, plants, or pets that display desired traits in an effort to increase the frequency of the trait. Family Tree

Organisms and Their Environment

- <u>Ecology</u> is the study of interactions among organisms and their environment.
- The Earth's <u>biosphere</u> (the portion of the Earth that supports life) is composed of <u>biotic</u> and <u>abiotic</u> factors.
- Abiotic factors:
- Biotic factors:

Energy Flow in an Ecosystem

- <u>Autotrophs (producers)</u>: Organisms that make their own food. Ex. Plants, some bacteria, algae
- <u>Heterotrophs (consumers)</u>: Organisms that must eat other organisms for energy.
 - Herbivores feed on producers/autotrophs
 - Carnivores feed on other heterotrophs/animals
 - Scavengers feed on dead heterotrophs/animals
 Omnivores feed on producers and heterotrophs
 - Decomposers/Detritovores break down dead organisms

Limiting Factors are environmental factors (biotic or abiotic) that affect an organism's ability to survive.

- Such as: food availability, predators, temperature, elevation, competition, types of vegetation, soil.
- These factors can restrict the existence or reproduction of

Organisms → carrying capacity

- Niche the role of a particular species -- what it does -- within its habitat.
- No two species perform precisely the same role in a particular habitat, at least not for long. If they do, competition for food and a place to live results, and one species eventually excludes the other.

Primary Succession

 Colonization of new land (no soil) that is exposed by avalanches, volcanoes, or glaciers by pioneer species (such as lichens and mosses)

Sequence of changes
that take place after a
community is
disrupted by natural
disaster (fire or
hurricane) or human
actions. (soil present)Image: Community is
further the second se

Buried seeds Roots sprouting regener

2 types of factors influence population growth

- Density dependent factors have an increasing affect as the population size increases. (Disease, competition, parasites, food, predation)
- <u>Density independent factors</u> affect all populations regardless of population size. (temperature, storms, floods, drought, habitat disruption)

Speciation by Geographic Isolation

- <u>Speciation</u> is a lineagesplitting event that separates one species into two.
- Populations of the same species in different geographic locations would be affected by different selective pressures, eventually making them genetically different.

